
High Resolution Aerospace Applications using the
NASA Columbia Supercomputer

Dimitri J. Mavriplis ∗

Department of Mechanical Engineering, University of Wyoming, Laramie WY 82071, USA

Michael J. Aftosmis †

NASA Advanced Supercomputer Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Marsha Berger ‡

Department of Computer Science, Courant Institute, New York University, NY, NY 10012, USA

NAS Technical Report
NAS-05-018
December 2005

This paper focuses on the parallel performance of two high-performance aerodynamic
simulation packages on the newly installed NASA Columbia supercomputer. These pack-
ages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver,
and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complemen-
tary combination of these two simulation codes enables high-fidelity characterization of
aerospace vehicle design performance over the entire flight envelope through extensive
parametric analysis and detailed simulation of critical regions of the flight envelope. Both
packages are industrial-level codes designed for complex geometry and incorporate cus-
tomized multigrid solution algorithms. The performance of these codes on Columbia is
examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand
interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 cpus
using the NUMAlink4 interconnect, with measured computational rates in the vicinity of
3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts,
particularly with multigrid. Nonetheless, the results are encouraging enough to indicate
that larger test cases using combined MPI/OpenMP communication should scale well on
even more processors.

Keywords: NASA Columbia, SGI Altix, scalability, hybrid programming, unstructured, computational
fluid dynamics, OpenMP

I. Introduction

Computational fluid dynamics (CFD) techniques have been developed and applied to aerospace analysis
and design problems since the advent of the supercomputer. However, in spite of several decades of

continuous improvements in algorithms and hardware, and despite the widespread acceptance and use of
CFD as an indispensable tool in the aerospace vehicle design process, computational methods are still
employed in a very limited fashion in the design process. The full potential of these methods in delivering
more optimal designs and in accelerating the design cycle has yet to be approached. On the one hand,
computational methods for aerodynamic analysis are only reliable within a narrow range of flight conditions,
where no significant flow separation occurs. This is due in part to the extreme accuracy requirements of the
aerodynamic design problem, where, for example, changes of less than 1% in the drag coefficient of a flight
vehicle can determine commercial success or failure. Additionally, the physics of flight aerodynamics is one
which encompasses a wide range of scales, from thin boundary layers in the millimeter range, up to the full
aircraft length scales. As a result, computational analyses are generally used in conjunction with experimental
methods and only over a restricted range of the flight envelope, where they have been essentially calibrated.

∗Professor, Department of Mechanical Engineering, University of Wyoming
†NASA Advanced Supercomputing Division, NASA Ames Research Center
‡Professor, Department of Computer Science, Courant Institute, NYU, 251 Mercer St. NY, NY 10012, USA

1 of 19

A recent series of workshops sponsored by the American Institute of Aeronautics and Astronautics (AIAA)
has determined that the accuracy achieved by CFD methods for aerodynamic applications is substantially
inferior to that delivered by state-of-the-art wind-tunnel testing, and improvements in accuracy will require,
among various items, substantially higher grid resolution than what is generally considered practical in the
current environment.?

While the analysis problem in itself is difficult, the computational design problem, in which one is
interested in modifying the geometry in order to improve some design objective of the vehicle, is much
more formidable. One the one hand, the number of design variables, which are the degrees of freedom
used to modify and define the optimized geometry, can be extremely large in number (10,000 to 100,000)
and the sensitivity of the numerical flow field to these design variables must be computed in order to drive
the optimization problem. On the other hand, once a new “optimal” design has been constructed, it must
be validated throughout the entire flight envelope. This includes not only the full range of aerodynamic
flight conditions, but also all possible control surface deflections and power settings. Generating this aero-
performance database not only provides all details of vehicle performance, but also opens up new possibilities
for the engineer. For example, when coupled with a six-degree-of-freedom (6-DOF) integrator, the vehicle can
be “flown” through the database by guidance and control (G&C) system designers to explore issues of stability
and control, or G&C system design.? Alternatively, a complete unsteady simulation of a maneuvering vehicle
may be undertaken. Ultimately, the vehicle’s suitability for various mission profiles or other trajectories can
also be evaluated by full end-to-end mission simulations.?

Our approach to this seemingly intractable problem relies on the use of a variable fidelity model, where a
high fidelity model which solves the Reynolds-averaged Navier-Stokes equations (NSU3D) is used to perform
the analysis at the most important flight conditions, as well as to drive a high-fidelity design optimization
procedure, and a lower fidelity model based on inviscid flow analysis on adapted Cartesian meshes (Cart3D)
is used to validate the new design over a broad range of flight conditions, using an automated parameter
sweep database generation approach. In addition to this variable fidelity approach, other enabling factors
include the use of custom developed state-of-the-art optimal solution techniques and large scale parallel
hardware. Both NSU3D and Cart3D employ multigrid methods, specially developed for each application,
which deliver convergence rates which are insensitive to the number of degrees of freedom in the problem.
Finally, the use of state-of-the-art large-scale parallel hardware enables improved accuracy in all phases of
the process by relying on high resolution meshes, generally employing one or two orders of magnitude higher
resolution than current-day standard practices.

II. The NASA Columbia Supercomputer

Figure 1. The 10,240 processor Columbia Supercom-
puter located at NASA Ames Research Center, Moffett
Field CA.

Figure 1 shows a snapshot of NASA’s Columbia
supercomputer located at Ames Research Center in
Moffett Field CA. This platform is a supercluster
array of 20 SGI Altix 3700 nodes. Each node has
512 Intel Itanium2 processors clocked at either 1.5
or 1.6Ghz, and each CPU has 2Gb of local mem-
ory. Each processor supports up to four memory-
load operations per clock-cycle from L2 cache to the
floating-point registers, and are thus capable of de-
livering up to 4 FLOPS per cycle to the user.

Of the 20 nodes in the system, Columbia 1-12
are Altix 3700 systems, while Columbia 13-20 are
actually 3700BX2 architectures. Processor bricks
in the 3700BX2’s are connected using SGI’s propri-
etary NUMAlink4 interconnect with a peak band-
width rated at 6.4Gb/sec. The work described here
was performed on four of these 3700BX2 nodes (c17-
c20). These 2048 CPUs are all clocked at 1.6Ghz
and each has 9Mb of L3 cache. While the 1Tb of local memory on each 512 CPU node of the Columbia
system is cache-coherent and globally shared, cache-coherency is not maintained between nodes. As a result
standard OpenMP codes are currently limited to 512 CPUs.

The entire supercluster is connected using both InfiniBand and 10Gigabit Ethernet networks. The Infini-

2 of 19

Band provides low-latency routing among the nodes for system-wide MPI communication, while the 10Gig-E
provides user access and I/O.

The large MPI simulations presented here exercised both the NUMAlink and InfiniBand interconnects.
While the NUMAlink can directly support MPI on each of the 2048 processors in the “Vortex” system
(c17-c20), the same is not true of the InfiniBand connection fabric. As discussed in [?], a limitation in
the number of MPI connections available to the InfiniBand cards installed on each 512 node restricts the
maximum number of MPI processes to

#MPIIB ≤
√

NIBcards ×Nconnections

n− 1
(1)

where n (≥ 2) is the number of Altix nodes, NIBcards = 8 per node and Nconnections = 64K per card. In
practical terms, this constraint implies that a pure MPI code run on 4 nodes of columbia can have no more
than 1524 MPI processes. If more MPI connections are attempted, the system will give a warning message,
and then drop down to the 10Gig-E network for communication. Thus, when using the InfiniBand network,
hybrid style applications are required (e.g. use 2 OpenMP threads for each MPI processes) when using large
numbers of CPUs in several boxes. This is an important point when considering runs on greater than 2048
CPUs. The NUMAlink spans at most 4 boxes, and InfiniBand is the only high-speed interconnect spanning
the entire machine. As a result, any plan to use more than 2048 CPUs requires the use of InfiniBand, and
therefore will demand hybrid communication to scale to larger problem sizes.

III. High-Fidelity Analysis Model

Our high-fidelity model (the NSU3D code) solves the Reynolds-averaged Navier Stokes (RANS) equations
on unstructured hybrid meshes. This code has been under development for over ten years,?,?,? and is
currently used in production mode in the aerodynamic design departments of several aircraft manufacturers.
This solver has also been a participant in the two recent Drag Prediction Workshops (DPW), sponsored
by AIAA, where the predictive ability of various research, production, and commercial CFD codes were
evaluated on standard aircraft configurations.? By solving the Navier-Stokes equations, NSU3D enables the
simulation of viscous flow effects, including boundary layers and wakes, which are not included in the inviscid
flow model used by Cart3D. The effects of turbulence for steady-state analyses are incorporated through the
solution of a standard one-equation turbulence model,? which is solved in a coupled manner along with the
flow equations.

The use of unstructured meshes provides the required flexibility for discretizing complex airframe ge-
ometries, which may include deflected control surfaces, deployed flaps for landing and take-off,? and engine
nacelle integration problems.? While the solver can handle a variety of element types, high-aspect-ratio pris-
matic elements are generally used in regions close to the aircraft surfaces, where thin boundary layers and
wakes prevail, and isotropic tetrahedral elements are used in outer regions, with pyramidal elements used
in transition regions. Because of the high accuracy requirements of aircraft design (drag coefficient values
are usually required to 1 part in 10,000: i.e. 1 drag count), and because of the sensitivity of important flow
physics such as flow separation to the behavior of the boundary layer, it is common practice in aerodynamic
simulations to fully resolve the turbulent boundary layer right down to the very small scale of the laminar
sub-layer. This is in contrast to many other CFD applications, where a large part of the boundary layer is
approximated using “wall function” boundary conditions. For typical aerodynamic Reynolds numbers (≥ 5
million), fully resolving the boundary layer requires the use of grid cells with a normal height at the wall of
10−6 wing chords, where a wing chord corresponds to the streamwise dimension of the wing. In order for the
aerodynamic simulation problem to remain tractable, anisotropic resolution must be employed in boundary
layer regions by using chordwise and spanwise grid spacings which are several orders of magnitude larger
than the normal spacing, but nevertheless adequate for capturing the gradients in these respective directions
(see detailed insert in Figure 13 (a)).

While the added cost of computing the physical viscous terms and solving the turbulence modeling
equation is relatively modest (25 to 50%), RANS simulations are generally found to be 50 to 100 times more
expensive for equivalent accuracy in terms of overall computational time compared to inviscid flow (Euler)
simulations such as Cart3D, due mainly to the added resolution required to resolve the viscous regions, and
the increased stiffness associated with the highly anisotropic mesh resolution employed in these regions.?
This makes the use of RANS solvers difficult for rapidly populating large data bases within the context of a
broad parameter study. However, due to the more complete modeling of the flow physics, RANS solvers are

3 of 19

(a) (b)

Figure 2. Illustration of agglomeration process for coarse level construction in multigrid algorithm. Median
dual control volumes are associated with grid points. Agglomeration proceeds by identifying a seed point and
merging all neighboring control volume points with this seed point (a). Resulting coarse level agglomerated
control volumes are larger and more irregular in shape (b).

best suited for use in highly accurate single point analyses, and in design optimization studies.
The NSU3D code employs a second-order accurate discretization, where the unknowns are stored at

the grid points. The six degrees of freedom at each grid point consist of the density, three-dimensional
momentum vector, energy, and turbulence variable. For the convective terms, the discretization relies on
a control volume formulation, achieving second order-accuracy through an extended neighbor-of-neighbors
stencil, while the discrete viscous terms are obtained using a nearest neighbor finite-volume formulation.?

Using the method of lines, these spatially discretized equations are advanced in time until the steady-state
is obtained. Convergence is accelerated through the use of an implicit agglomeration multigrid algorithm.?, ?
The idea of a multigrid method is to accelerate the solution of a fine grid problem by computing correc-
tions using coarser grid levels, where computation costs are lower, and errors propagate more rapidly. For
unstructured meshes, the construction of a complete sequence of coarser mesh levels, given an initial fine
level, represents a non-trivial task. The agglomeration multigrid approach constructs coarse grid levels by
agglomerating or grouping together neighboring fine grid control volumes, each of which is associated with
a grid point, as depicted in Figure 2(a). This is accomplished through the use of a graph algorithm, and
the resulting merged control volumes on the coarse level form a smaller set of larger more complex-shaped
control-volumes, as shown in Figure 2(b). This procedure is applied recursively, in order to generate a
complete sequence of fine to coarse grid levels. Figure 3 illustrates the resulting coarse grid levels for a
three-dimensional aircraft configuration. In the flow solution phase, each multigrid cycle begins with several
time steps on the finest level, after which the problem is transfered to the next coarser level, and the process
is repeated recursively until the coarsest level of the sequence is reached, at which point the corrections are
interpolated back to the finest level, and the process is repeated. The simplest strategy consists of performing

(a) (b)

Figure 3. First (a) and third (b) agglomerated multigrid levels for unstructured grid over aircraft configuration.

4 of 19

(a) (b)

Figure 4. (a): Illustration of multigrid V-cycle. T denotes time step on a particular grid level, R denotes
restriction (fine to coarse) transfer, and P denotes prolongation (coarse to fine) transfer. Grid 1 is the coarsest
level and Grid 4 denotes the finest level in this depiction. (b): Illustration of the recursive nature of the
multigrid W-cycle which performs additional visits to the coarser grid levels. Restriction and prolongation
operation symbols have been omitted for clarity.

(a) (b)

Figure 5. (a): Illustration of two-dimensional unstructured grid with high stretching in near body and wake
regions and (b) resulting set of lines used for implicit line solver.

one or more time steps on each grid level in the coarsening phase, and no time steps on the refinement phase.
This is denoted as the multigrid V-cycle, and is depicted in Figure 4(a). An alternate cycle, denoted as the
multigrid W-cycle, is a recursive procedure which performs additional visits to the coarser mesh levels, as
shown in Figure 4(b). The multigrid W-cycle has been found to produce superior convergence rates and to
be more robust, and is thus used exclusively in the NSU3D calculations.

Rather than performing simple explicit time steps on each grid level within the multigrid sequence, the
use of local implicit solvers at each grid point provides a more efficient solution mechanism. This mandates
the inversion of dense 6x6 block matrices at each grid point at each iteration. However, in regions of
high mesh stretching such as in the boundary layer regions, solution efficiency degrades due to the stiffness
induced by the extreme grid anisotropy. This can be overcome be resorting to an implicit line solver in such
regions. Using a graph algorithm, the edges of the mesh which connect closely coupled grid points (usually
in the normal direction) in boundary layer regions, are grouped together into a set of non-intersecting lines.
Figure 5 illustrates the construction of the line set for a two-dimensional mesh with appreciable stretching
in near-wall and wake regions. The discrete governing equations are then solved implicitly along these lines,
using a block tridiagonal LU-decomposition algorithm for each line. In isotropic regions of the mesh, the
line structure reduces to a single point, and the point-implicit scheme described above is recovered. This
line-implicit driven agglomeration multigrid algorithm has been shown to produce convergence rates which
are both insensitive to the degree of mesh resolution, and to the degree of mesh stretching.?

The NSU3D code achieves parallelism through domain decomposition. The adjacency graph of each

5 of 19

fine and coarse agglomerated grid level of the multigrid sequence is fed to the METIS partitioner? which
returns the partitioning information. Each grid level is partitioned independently, and coarse and fine grid
partitions are then matched up together based on the degree of overlap between the respective partitions,
using a non-optimal greedy-type algorithm. This approach may result in more inter-processor communication
when transferring variables between coarse and fine multigrid levels than a fully nested approach - where
the coarse level partitions are inferred from the fine level partitions. However, experiments indicate thaat
it is more important to optimize the intra-level partitioning process versus inter-level partitioning, since the
work required in transferring variables between levels is minimal compared to the work performed by the
implicit solver within each level.

For each partitioned level, the edges of the mesh which straddle two adjacent processors are assigned to
one of the processors, and a “ghost vertex” is constructed in this processor, which corresponds to the vertex
originally accessed by the edge in the adjacent processor (c.f. Figure 6(a)). During a residual evaluation, the
fluxes are computed along edges and accumulated to the vertices. The flux contributions accumulated at the
ghost vertices must then be added to the flux contributions at their corresponding physical vertex locations
in order to obtain the complete residual at these points. This phase incurs interprocessor communication.
In an explicit (or point implicit) scheme, the updates at all points can then be computed without any
interprocessor communication once the residuals at all points have been calculated. The newly updated
values are then communicated to the ghost points, and the process is repeated.

The use of line solvers complicates the parallel implementation, since the block tridiagonal line solver
is an inherently sequential algorithm. The partitioning procedure is thus modified to avoid breaking the
implicit lines across inter-partition boundaries. This is achieved by contracting the adjacency graph along
the implicit lines, effectively collapsing each line to a single point in the graph as shown in Figure 6(b).
Using the appropriate vertex and edge weights which result from the contraction process, this new weighted
graph is fed to the METIS partitioner, resulting in a set of partitions which never breaks an implicit line
structure.

The NSU3D solver employs a hybrid MPI/OpenMP approach for parallel execution. In general, each
partition is associated with an individual processor, and inter-processor communication can be performed
using MPI alone, using OpenMP alone, or using a hybrid approach where each MPI process is responsible for
several partitions/processors, which communicate among themselves using OpenMP. For MPI-alone cases,
communication is executed by packing messages from all ghost points on a given processor that are to be
sent to another processor into a buffer that is then sent as a single message. This standard approach to
inter-processor communication has the effect of reducing latency overheads by creating fewer larger messages.

For shared memory architectures using OpenMP, the multiple partitions are run simultaneously using one
thread per partition, and parallelization is achieved at the partition loop level. In such cases, a potentially
more efficient communication strategy is to simply copy (or copy-add) the values from the individual ghost
points into the locations which correspond to their real images, since the memory on different partitions is
addressable from any other partition.

For hybrid MPI/OpenMP cases, each MPI process is responsible for various partitions, which are executed
in parallel using one OpenMP thread per partition. Communication between partitions shared under a single

(a) (b)

Figure 6. (a): Illustration of creation of internal edges and ghost points at inter-processor boundaries; (b):
Illustration of line edge contraction and creation of weighted graph for mesh partitioning. V and E values
denote vertex and edge weights respectively.

6 of 19

(a) (b)

Figure 7. (a): Illustration of thread to thread MPI communication for a two-level hybrid MPI-OpenMP
implementation; (b): Illustration of Master-Thread controlled MPI communication for a two-level hybrid MPI
OpenMP implementation.

MPI process proceeds as in the pure OpenMP case. In order to communicate between partitions owned by
different MPI processes, two programming models have been considered. A communication strategy which
can be executed entirely in parallel consists of having individual threads perform MPI calls to send and
receive messages to and from other threads living on other MPI processes, as illustrated in Figure 7(a). In
this case, the MPI calls must specify the process identifier (id number) as well as the thread id to which the
message is being sent (or received). While the specification of a process id is a standard procedure within an
MPI call, the specification of a thread id can be implemented using the MPI send-recv tag.? An alternate
approach, illustrated in Figure 7(b), consists of having all threads pack their messages destined for other
threads of a particular remote MPI process into a single buffer, and then having the MPI process (i.e., the
master thread alone) send and receive the message using MPI . The received messages can then be unpacked
or scattered to the appropriate local subdomains. This packing and unpacking of messages can be done in a
thread-parallel fashion. However, the MPI sends and receives are executed only by the master thread, and
these operations may become sequential bottlenecks since all other threads remain idle during this phase.
One way to mitigate this effect is to overlap OpenMP and MPI communication. Using non-blocking sends
and receives, the master thread first issues all the MPI receive calls, followed by all the MPI send calls. After
this, while the MPI messages are in transit, the OpenMP communication routines are executed by all threads,
after which, the master thread waits until all MPI messages are received. Thread-parallel unpacking of the
MPI messages then proceeds as usual. This approach also results in a smaller number of larger messages
being issued by the MPI routines, which may be beneficial for reducing latency on the network supporting
the MPI calls. On the other hand, there is always a (thread-) sequential portion of communication in this
approach, which may degrade performance depending on the degree of communication overlap achieved.

Previous experience has shown that the thread parallel approach to communication scales poorly due to
the MPI calls “locking” and thus executing serially at the thread level.? Thus, the master thread communi-
cation strategy is used exclusively in this work.

Within each partition, single-processor performance is enhanced using local reordering techniques. For
cache-based scalar processors, such as the Intel Itanium on the NASA Columbia machine, the grid data is
reordered for cache locality using a reverse Cuthill McKee type algorithm. For vector processors, coloring
algorithms are used to enable vectorization of the basic loop over mesh edges, which accumulate computed
values to the grid points. Because the line solver is inherently scalar, the lines are sorted based on their
length, and grouped into sets of 64 lines of similar length, over which vectorization may then take place at
each stage in the line solver algorithm. These techniques have been demonstrated on the CRAY SV-1 and
NEC SX-6.

IV. Optimization and Parametric Studies for Performance Prediction

The outcome of design optimization is a modified vehicle whose performance is known only at the design
points. Even with data from several additional cases as provided by NSU3D, this only provides a small
portal into understanding overall vehicle performance. Current research into automated parametric studies
is aimed at broadening this snapshot of vehicle performance by rapidly producing the entire performance
database for a new design as delivered by the shape optimizer. These parametric studies consider not only
a range of flight conditions, but also include all possible control surface deflections and power settings.

Large numbers of aerodynamic and shape parameters can easily result in aero-performance databases
with 104-106 entries. Automatically computing this performance envelope is the goal of NASA’s Cart3D
analysis package.?,?, ? This package permits parametric sweeps of not only flight conditions (Mach number,
angle-of-attack and sideslip), but also deployment of control surfaces. The geometry comes into the system

7 of 19

as a set of watertight solids, either directly from the optimizer or from a CAD system. These solids are
automatically triangulated and positioned for the desired control surface deflections.?,?,? With the new
analysis model in-hand, the embedded-boundary Cartesian method automatically produces a computational
mesh to support the CFD runs.?, ?

The parameter studies consider changes in both the geometry (control surface deflection) and “wind
parameters” (Mach, angle-of-attack, sideslip). A typical analysis may consider three “Configuration-Space”
parameters (e.g. aileron, elevator and rudder deflections) and examine three “Wind-Space” parameters
(Mach number, angle-of-attack, and sideslip angle). In this six-dimensional parametric space, ten values of
each parameter would require 106 CFD simulations; 1000 wind-space cases for each of the 1000 instances
of the configuration in the config-space. The job control scripts arrange the jobs hierarchically such that
different instances of the geometry are at the top level with wind parameters below. For a particular instance
of the geometry, the jobs exploring variation in the Wind-Space all run using the same mesh and geometry
files. This approaches amortizes the cost of preparing the surface and meshing each instance of the geometry
over the hundreds or thousands of runs done on that particular instance of the geometry. On Columbia’s
Itanium2 CPUs the Cartesian mesh generator? typically produces 3-5 million cells-per-minute, and mesh sizes
for realistically complex vehicles generally contain 3-10 million cells. Moreover, when multiple instances of a
configuration need to be produced (e.g. for each of several elevator settings) these mesh generation jobs are
all executed in parallel.?,? This architecture, combined with the underlying speed of the mesh generation
and geometry manipulation processes implies that the speed of the flow solver is the primary driver in the
total cost of producing the aerodynamic database.

In typical database fills, hundreds or thousands of cases need to be run. Under these circumstances,
computational efficiency dictates running as many cases simultaneously as memory permits, and this strategy
maps well to the Columbia system. The 3-10 million cell cases typically fit in memory on 32-128 CPUs,
making it possible to run several cases simultaneously on each 512 CPU node of the system. Such cases can
be run using either OpenMP or MPI communication.

V. Cart3D Flow Solver and Parallelization

Despite the “embarrassingly parallel” nature of database fills, there is still a strong demand for the
ability to run extremely large cases, or individual cases extremely rapidly. Obviously when running 105 or
106 cases, there is little demand to thoroughly peruse the results of each simulation, and in general, the only
data stored for these cases are surface pressures, convergence histories and force and moment coefficients.
If, during review of the results, the database shows unexpected results in a particular region, those cases
are typically re-run on-demand. The ability to re-create the full solution extremely rapidly by spreading
the job to thousands of processors provides a “virtual database” of the full solution data. In many cases,
it is actually faster to re-run a case than it would be to retrieve it from mass storage. In addition to
these on-demand detailed queries, there is often a need to compute a case on a much larger mesh than the

Figure 8. Embedded-boundary Cartesian mesh around two instances of space shuttle orbiter configuration
showing automatic mesh response to capture deflection of the elevon control surface.

8 of 19

Figure 9. Surface triangulation of SSLV geometry including detailed models of the orbiter, solid rocket
boosters, external tank, attach hardware and five engines with gimbaling nozzles. 1.7 million elements.

relatively small meshes used in database fills. This need may be triggered by the desire to compare detailed
flow structures with the Navier-Stokes design code, or in performing mesh refinement studies to establish
meshing parameters or to verify results. Thus there is great pressure for the same solver to perform well on
thousands of CPUs.

Cart3D is a simulation package targeted at conceptual and preliminary design of aerospace vehicles with
complex geometry. It is in widespread use throughout NASA, the DoD, the US intelligence industry and
within dozens of companies in the United States. The flow simulation module solves the Euler equations
governing inviscid flow of a compressible fluid. Since these equations neglect the viscous terms present in
the full Navier-Stokes equations, boundary-layers, wakes and other viscous phenomena are not present in
the simulations. This simplification removes much of the demand for extremely fine meshing in the wall
normal direction that Navier-Stokes solvers must contend with. As a result, the meshes used in inviscid
analysis are generally smaller and simpler to generate than those required for viscous solvers like NSU3D.
This simplification is largely responsible for both the degree of automation available within the Cart3D
package and the speed with which solutions can be obtained. Despite this simplification, inviscid solutions
have a large area of applicability within aerospace vehicle design as there are large classes of problems for
which they produce excellent results. Moreover, when significant viscous effects are present, large numbers
of inviscid solutions can often be corrected using the results of a relatively few full Navier-Stokes simulations.

Cart3D’s solver module uses a second-order cell-centered, finite-volume upwind spatial discretization
combined with a multigrid accelerated Runge-Kutta scheme for advance to steady-state.? Figure 8 shows
how the package automatically adapts the embedded-boundary Cartesian grid to capture control surface
deflection of a particular geometry. This flexibility is a key ingredient in the automation of configuration-
space parameters.

Like NSU3D, Cart3D uses a variety of techniques to enhance its efficiency on distributed parallel machines.
It uses multigrid for convergence acceleration and employs a domain-decomposition strategy for subdividing
the global solution of the governing equations up among the many processors of a parallel machine.?,?,?

The same multigrid cycling strategies as shown in Figure 4 are used by Cart3D’s solver module, and as
with NSU3D, W-cycles are preferred. Rather than relying upon agglomeration and METIS, both the mesh
coarsener and mesh partitioner in Cart3D take advantage of the hierarchical nesting of adaptively refined
Cartesian meshes. As detailed in reference [?], the techniques are based upon a Space-Filling-Curve (SFC)
reordering of the adapted meshes. Figure 10 illustrates this ordering using a 2D example mesh around a
NACA 0012 airfoil. For illustration purposes this 2D example shows the cells ordered using the Morton
SFC, however in 3D the Peano-Hilbert SFC is generally preferred.? The construction rules for these SFC’s

9 of 19

are such that a cell’s location on the curve can be computed by one-time inspection of the cell’s coordinates,
and thus the reordering process is bound by the time required to quicksort the cells.

Figure 10. Space-Filling-Curve (Morton order) illus-
trating reordering of adaptively-refined Cartesian mesh
around a 2-D airfoil. In three dimensions, Cart3D uses
either Peano-Hilbert or Morton SFC’s for both mesh
coarsening and domain-decomposition.

Examining the ordering in Figure 10, the coarse
mesh generation process becomes clear. Tracing
along the SFC, cells that collapse into the same
coarse cell (“siblings”) are collected whenever they
are all the same size, and the corresponding coarse
cell is inserted into a new mesh structure. This pro-
cess builds the coarse mesh cell-by-cell. An addi-
tional benefit of this single-pass construction algo-
rithm is that the coarse mesh is automatically gen-
erated with its cells already ordered along the SFC.
Thus, this coarse mesh is immediately available for
further coarsening by the same traversal algorithm.
Numerical experiments with this coarsening proce-
dure show that it achieves coarsening ratios in excess
of 7 on typical examples.? Figure 11 shows a coars-
ening sequence around a re-entry vehicle geometry.
The fine grid is on the left, and the coarsest mesh
is on the right. Each frame in this figure shows
the mesh partitioned into 2 subdomains using the
SFC as a partitioner. The mesh partitioner actually
operates on-the-fly as the SFC-ordered mesh file is
read. The locality properties of the SFC ordering
are such that a good partitioning strategy is to sim-
ply distribute different segments of the SFC among
the various processors. For example, if the mesh in figure 10 were to be divided into 2 subdomains, dividing
the SFC in half would result in two subdomains which split the mesh vertically down the center. Quartering
the SFC would result in 4 square subdomains with the airfoil at the center. Results in reference [?] indicate
that the surface-to-volume ratio of these SFC-derived partitions track that of an idealized cubic partitioner.

Figure 11 shows each mesh in the multigrid hierarchy partitioned into two subdomains. All meshes in
the hierarchy are partitioned independently using the same SFC. This implies that although there will be
generally very good overlap between corresponding fine and coarse partitions, they are not perfectly nested.
The slight changes in partition boundaries in the figure make this clear. While most of the communication

Figure 11. Example multigrid mesh hierarchy for re-entry vehicle geometry, fine mesh on left, coarsest on
right. The partitioning is shown for 2 subdomains and each mesh in the hierarchy is partitioned independently
using the same SFC.

10 of 19

for multigrid restriction and prolongation in a particular subdomain will take place within the same local
memory, these operators will incur some degree of off-processor communication as well. As with NSU3D,
this approach favors load-balancing the work on each mesh in the hierarchy at the possible expense commu-
nication.

Figure 12. Cartesian mesh around full SSLV configuration
including orbiter, external tank, solid rocket boosters, and
fore and aft attach hardware. Mesh color indicates 16-way
decomposition of 4.7M cell using the SFC partitioner in ref-
erence.?

Figure 12 shows an example of an adapted
Cartesian mesh around the full SSLV config-
uration. This mesh contains approximatly
4.7M cells with 14 levels of adaptive subdi-
vision. The mesh is illustrated with a single
cutting plane through the domain. The grid
in in this figure is painted to indicate its par-
titioning into 16 subdomains using the Peano-
Hilbert SFC. Partition boundaries in this ex-
ample were chosen for perfect load-balancing
on homogeneous CPU sets and cut-cells were
weighted 2.1 times more heavily than un-cut
Cartesian hexahedra. The partitions in this
example are all predominantly rectangular as
is characteristic of subdomains generated with
SFC-based partitioners.

VI. Performance
and Scalability of NSU3D
for High-Fidelity Analysis

Figure 13 illustrates a coarse unstructured
mesh over two aircraft configurations, simi-
lar to the finer mesh used in the benchmark
NSU3D simulations on the NASA Columbia
supercomputer. While the displayed mesh in
Figure 13 (a) contains a total of 1 million grid
points, the fine benchmark mesh contains a to-
tal of 72 million points on the same config-
uration. The displayed meshes and configura-
tions are taken from the AIAA drag prediction
workshop study.? Subsequent studies compar-
ing various CFD codes on this configuration
have shown that this level of grid resolution,
and even additional levels of refinement (lead-
ing to a total of 9 million grid points) are inadequate for the level of accuracy desired in the aircraft design
process.?,? Therefore, a finer grid of 72 million points (315 million cells) was generated and used for the
benchmarks. The accuracy of the results computed on this mesh is examined in detail in reference? by
comparing these results with results obtained on the coarser grid levels, and with computations performed
on an alternate mesh of 65 million points, using a different mesh topology in the wing trailing edge region.
The results show substantial differences remain even at these high resolution levels, and make the case for
the use of even finer grids, or at least for a better distribution and topology of mesh points in critical regions
of the domain.

Figure 14 (a) depicts the convergence to steady-state achieved on the 72 million point grid using four,
five, and six agglomerated multigrid levels, using a multigrid W-cycle in all cases. This problem contains a
total of 433 million degrees of freedom, since each fine grid point contains 6 quantities. The flow conditions
are determined by a freestream Mach number of 0.75, an incidence and sideslip angle of 0 degrees, and
a Reynolds number of 3 million (based on the mean aerodynamic chord). For the five and six multigrid-
level runs, the solution is adequately converged in approximately 800 multigrid cycles, while the four-level
multigrid run suffers from slower convergence. Note that the single grid case (i.e. fine grid only without
multigrid) would be very slow to converge, requiring several hundred thousand iterations for a mesh of this
size. Figure 14 (b) depicts the parallel speedup and total number of floating point operations achieved for

11 of 19

(a) (b)

Figure 13. (a): Illustration of coarse mesh about aircraft without and with engine nacelle configuration showing
detail of anisotropic prismatic grid layers near aircraft surface (a), and details near engine nacelle (b). Mesh
(a) contains 1 million grid points. Mesh (b) contains 1.9 million grid points. Fine mesh test case (not shown)
contains 72 million grid points.

this case on the NASA Columbia supercomputer, using up to 2008 CPUs. The identical problem was run
on 128, 256, 502, 1004, and 2008 CPUs. Assuming a perfect speedup on 128 CPUs, the four-level multigrid
run achieves a superlinear speedup of 2250 on 2008 CPUs, while the six-level multigrid run achieves 2044
on 2008 CPUs. Note that the single grid case (not shown) achieves even higher speedup (2395) than the
four-level multigrid case, but does not constitute a practical solution strategy.

The superlinear speedup in these cases is likely due to favorable cache effects for the decreased partition
sizes on large CPU counts. On the other hand, the reduction in scalability with additional multigrid levels
is due to the increased communication requirement of the coarsest levels, which contain minimal amounts of
computational work, but span the same number of processors as the finest grid level. In fact, the coarsest
(6th) level contains only 8188 vertices, and in the case of the 2008 CPU run, the average partition contains
only 4 or 5 coarse grid points, with some of the coarsest level partitions being empty (i.e. containing no grid
vertices at all) due to minor imbalances in the partitioning process. Note also that within the context of a

Multigrid Cycles

R
M
S
R
es
id
ua
l

250 500 750 1000
10-5

10-4

10-3

10-2

10-1

100

4 Level Multigrid
5 Level Multigrid
6 Level Multigrid

(a) (b)

Figure 14. (a): Multigrid Convergence Rate using 4, 5, and 6 grid levels for NSU3D Solution of Viscous
Turbulent Flow over Aircraft Configuration. (b): Scalability and Computational Rates Achieved on NASA
Columbia Supercomputer for NSU3D Solution of Viscous Turbulent Flow over Aircraft Configuration.

12 of 19

multigrid W-cycle (c.f. Figure 4(b)), the coarsest level is visited 2n−1 = 32 times for a six-level multigrid
cycle (which corresponds to a single fine grid visit). Nevertheless, all three multigrid cases achieve better
than ideal speedup in going from 128 to 2008 CPUs, due to the fact that the majority of the work and
communication is performed on the finest grid levels. Considering that even on the finest grid, the average
partition contains only approximately 36,000 grid points for 2008 CPUs, this level of scalability is rather
impressive.

The number of floating point operations (FLOPS) was measured using the Itanium hardware counters
through the “pfmon” interface. The difference in the number of FLOPS recorded for a five multigrid-cycle
run and a six multigrid-cycle run were recorded, in order to get a FLOP number for a single multigrid cycle.
This number was then divided by the amount of wall-clock time required for a single multigrid cycle for
the various runs on different numbers of processors. In this approach, the FLOP count was determined
by disabling the MADD feature on the compiler, while the timings were obtained with the MADD feature
enabled, thus resulting in the counting of MADD operations (combined Multiply-Add) as 2 FLOPS. Using
this approach, the single grid run achieved a computational rate of 3.4 Tflops on 2008 CPUs, while the four,
five and six level multigrid runs achieved 3.1 Tflops, 2.95 Tflops, and 2.8 Tflops, respectively. When taking
into account the speed of convergence of these different runs (c.f. Figure 14 (a)), the five level multigrid
scheme represents the overall most efficient solution scheme. However, for robustness reasons, we prefer to
use the six level multigrid scheme which delivers the most consistent convergence histories over a wide range
of flow conditions. On 2008 CPUs, a six level multigrid cycle requires 1.95 seconds of wall clock time, and
thus the flow solution can be obtained in under 30 minutes of wall clock time (including I/O time). The
fact that the multigrid runs with fewer grid levels deliver better scalability but lower numerical convergence
illustrates the importance of balancing floating point performance with numerical algorithmic efficiency in
order to obtain the most efficient overall solution strategy.

Since the 72 million point grid case can run on as few as 128 CPUs (as determined by memory require-
ments) and because of the demonstrated speed of this same case on 2008 CPUs, it should be feasible to run
much larger grids on the four node (2048 CPU) sub-cluster of the NASA Columbia machine. For example,
a case employing 109 grid points can be expected to require 4 to 5 hours to converge on 2008 CPUs. At
present, the main issues holding back the demonstration of such large cases involve the grid generation and
preprocessing operations, which are mostly sequential in nature, and the resulting file sizes. The grid input
file for the flow solver in the 72 million point case measures 35 Gbytes, and increasing the grid size by
another order of magnitude will certainly produce I/O bottlenecks particularly considering the transfer rates
typically encountered between the compute servers and the mass storage system.

On the other hand, there are compelling reasons to seek further speedup of the existing 72 million grid
point case, by going to even higher processor counts. For example, in the case of a design optimization
problem, multiple analysis runs are required throughout the design process. Even for relatively efficient
adjoint-based design-optimization approaches,?,?,? as many as 20 to 50 analysis cycles may be required
to reach a local optimum, which would require up to 24 hours on the 72 million point grid running on
2008 CPUs. We are thus interested in examining the speedup achievable for the 72 million point case on
even higher processor counts, using up to 4016 CPUs. However, in order to run a case on more than 2048
CPUs, we are faced with certain hardware limitations of the NASA Columbia machine. Notably, the current
NUMAlink interconnect only spans 2048 CPUs, and therefore the InfiniBand interconnect must be used to
access larger numbers of processors. Additionally, the limitation on the number of MPI processes under the
InfiniBand interconnect (c.f. eq. (1)), which corresponds to a total of 1524 MPI processes, results in the
requirement of using a combined OpenMP/MPI approach for accessing the required number of processors.

In order to study the effects of these limitations, we begin with a study of the performance of the 72 million
point grid case on 128 CPUs, using the hybrid OpenMP/MPI communication strategy, and comparing the
observed performance for the same cases using the NUMAlink and InfiniBand interconnects. The baseline
case consists of the 6 level multigrid problem running on 128 CPUs, using MPI exclusively within one
compute node (512 CPUs). This case was also run using 128 CPUs across two compute nodes (using 64
CPUs in a node), and across four compute nodes (using 32 CPUs in a node), making use of the NUMAlink
interconnect between the nodes. In all cases, the timings were essentially indistinguishable, and averaged
31.3 seconds per multigrid cycle. Using this as the reference time, Figure 15 compares the relative efficiency
using the InfiniBand interconnect for four compute nodes, and using 128 MPI processes with 1 thread per
process, 64 MPI processes with 2 OpenMP threads per MPI process, and 32 MPI processes with 4 OpenMP
threads each. In all cases, the degradations in performance from the baseline case are relatively minor. Using

13 of 19

Figure 15. Relative parallel efficiency for 72 million point six-level multigrid case on 128 processors distributed
over four compute nodes, using the NUMAlink interconnect versus the InfiniBand interconnect and using from
1 to 4 OpenMP threads per MPI process.

2 and 4 OpenMP processes with the NUMAlink interconnect the efficiency decreases to 98.4% and 87.2%
respectively (i.e. time per cycle increases by the inverse of the efficiency). This penalty may be due to the loss
of local parallelism (at the OpenMP thread level) during the MPI to MPI communication, which is carried
out by the master thread on each MPI process.? The InfiniBand results show similar behavior, although
the degradation in performance in going from NUMAlink to InfiniBand is minimal (95.7% efficiency for
the pure MPI case, with InfiniBand, actually outperforming the NUMAlink for the 4 thread OpenMP/MPI
case). Only the results using four compute nodes are shown, since the timings using two and four nodes are
essentially identical.

Figure 16 (a) depicts the scalability using NUMAlink and InfiniBand for the combined OpenMP/MPI
code using 1 or 2 OpenMP threads, for the single grid (no multigrid) case from 128 up to 2008 CPUs. Note
that on 2008 CPUs, the InfiniBand case can only be run using 2 OpenMP threads per MPI process, due
to the limitation on the number of MPI processes (i.e. 1524) under InfiniBand. These results mirror those
observed on 128 CPUs, showing only slight degradation in overall performance between the NUMAlink and
the InfiniBand interconnects, and an additional slight degradation in going from 1 to 2 OpenMP treads per
MPI process. Note that in all cases, superlinear speedup is still achieved at 2008 CPUs.

Figure 16 (b) depicts the same scalability results for the six-level multigrid solver, which is the preferred

(a) (b)

Figure 16. Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand inter-
connect, and using 1 or 2 OpenMP threads per MPI process for single grid case (a), and for six-level multigrid
case (b).

14 of 19

(a) (b)

Figure 17. (a): Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand
interconnect, and using 1 or 2 OpenMP threads per MPI process for two-level multigrid case (a), and for
three-level multigrid case (b).

solution algorithm for the 72 million point case. The performance degradation due to the use of 2 OpenMP
threads is somewhat larger than in the single grid case, although it is still modest. (Note that the scalability
of the baseline case, NUMAlink with 1 OpenMP thread for six-level multigrid, is slightly lower than that
observed in Figure 14 (b). This may be due to different compiler options used to invoke OpenMP, and/or
to variations in the state of the hardware, since these test were performed several weeks apart). However,
the degradation in performance due to the use of InfiniBand over NUMAlink is dramatic, particularly at the
higher processor counts. This may be attributable to the lower bandwidth of the InfiniBand for the increased
communication required by the coarser levels of the multigrid sequence. In order to further investigate this
behavior, scalability studies have been run for the two-level, three-level, four-level, and five-level multigrid
solvers, as shown in Figures 17 and 18. As expected, a gradual degradation of performance is observed as
the number of multigrid levels is increased. However, even the two level multigrid case shows substantial
degradation between the NUMAlink and InfiniBand results. In Figure 19 (a) the second grid in the multigrid
sequence, which contains approximately 9 million points, is run by itself, without the finer grid, or any coarser
multigrid levels, to examine the scalability on this grid alone.As expected, this coarser grid level does not
scale as well as the finer 72 million point grid. However, both the NUMAlink and InfiniBand results degrade

(a) (b)

Figure 18. (a): Parallel speedup observed for 72 million point grid comparing NUMAlink versus InfiniBand
interconnect, and using 1 or 2 OpenMP threads per MPI process for four-level multigrid case (a), and for
five-level multigrid case (b).

15 of 19

(a) (b)

Figure 19. Parallel speedup observed for second coarse multigrid level alone (9 million grid points) (a) and for
third multigrid level alone (1 million grid points) (b) comparing NUMAlink versus InfiniBand interconnect,
and using 1 or 2 OpenMP threads per MPI process.

at similar rates, and deliver similar performance even on 2008 CPUs. Analogous results are found for the
next coarser multigrid level (which contains approximately 1 million points) in Figure 19 (b). These findings
suggest that the increased communication generated by the coarser multigrid levels is not responsible for the
differences observed between the NUMAlink and InfiniBand scalabilities of the full multigrid algorithm.

The other main source of communication in the multigrid algorithm occurs in the inter-grid transfer
phase, when transferring solution quantities from fine to coarse (restriction operation) and from coarse to
fine (prolongation operation) grids. Although the volume of communication data in these operations is
estimated to be lower than in the intra-grid communication routines, because the coarse and fine levels are
non-nested, these communication operations may be less local than those performed on each level, although
the number of neighbors in the communication graph is approximately the same in both cases (i.e. the
maximum degree of the fine grid communication graph is 18, while the maximum degree of the inter-grid
communication graph is 19). In reference,? severe degradation of the InfiniBand latency and bandwidth
was observed for a Random Ring communication benchmark, and we speculate that the performance of the
inter-grid multigrid communication operations may be related to this effect.

Given the results of Figure 16 (a), we may expect the single grid case for 72 million points to scale
relatively well on 4016 CPUs, using the InfiniBand interconnect, and 4 OpenMP processes per MPI process
(as dictated by the available number of MPI processes under InfiniBand). However, the multigrid algorithm
using any number of grid levels will most likely perform no better on 4016 CPUs, than on 2008 CPUs
using the NUMAlink. However, the results obtained on 128 CPUs (c.f. Figure 15) suggest that a larger
multigrid case (of the order of 109 grid points with 7 multigrid levels) would perform adequately on 4016
CPUs, delivering of the order of 5 to 6 Tflops. In order to obtain good performance with the 72 million
point multigrid case, the exact cause of the InfiniBand performance degradation must be determined and
resolved if possible.

VII. Performance and Scalability of Cart3D on Large Problems

To assess performance of Cart3D’s solver module on realistically complex problems, several performance
experiments were devised examining scalability for a typical large grid case. The case considered is based on
the full Space Shuttle Launch Vehicle (SSLV) example shown earlier (Fig. 12). For scalability testing the
mesh density was increased to 25M cells, which is about twice as fine as that shown in Figure 12. Cart3D’s
solver module solves five equations for each cell in the domain giving this example approximately 125M
degrees-of-freedom. The geometry includes detailed models of the orbiter, solid rocket boosters, external
tank, five engines, and all attach hardware. The geometry in this example also includes the modifications
to the external tank geometry as part of NASA’s Return-to-Flight effort. Figure 20(a) shows pressure
contours of the discrete solution at Mach = 2.6, angle-of-attack = 2.09 deg. and 0.8 degrees sideslip. The

16 of 19

(a)

0 64 128 192 256 320 384 448 512
of CPUs

0

100

200

300

400

500

Pa
ra

lle
l S

pe
ed

up

Ideal
OpenMP, c17, c18, c19, c20
MPI, c17, c18, c19, c20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TF
LO

P/
s

Cart3D - 4 Level Multigrid
25 M cell SSLV launch configuration

(b)

Figure 20. (a):Pressure contours around full SSLV configuration including orbiter, external tank, solid rocket
boosters, and fore and aft attach hardware for benchmarking case described in text. (b): Parallel scalability
of Cart3D solver module on Columbia using SSLV example on 25M cell mesh. Runs conducted on single 512
CPU node of Columbia system.

surface triangulation contains about 1.7M elements. An aerodynamic performance database and virtual-flight
trajectories using this configuration with power on was presented in 2004.?

This example was used for several performance experiments on the Columbia system. These experiments
included comparisons of OpenMP and MPI, the effects of multigrid on scalability, and comparisons of the
NUMAlink and InfiniBand communication fabrics. The baseline solution algorithm used 4 levels of multigrid,
and unless otherwise stated, all results are with this scheme.

As discussed earlier, Cart3D’s solver module can be built against either OpenMP or MPI communication
libraries. On the Columbia system, the 1Tb of each 512 CPU node is globally sharable to any process within
the node, but cache-coherent shared memory is not maintained between nodes. Thus, pure OpenMP codes are
restricted to, at most, the 512 CPUS within a single box. Figure 20(b) shows scalability for the same problem
using both OpenMP and MPI. These cases were run on CPU sets with 32 to 504 processors on Columbia
node c18. In computing parallel speedup, perfect scalability was assumed on 32 CPUs. Performance with
both programming libraries is very nearly ideal, however while the MPI shows no appreciable degradation
over the full processor range, the OpenMP results display a slight break in the slope of the scalability curve
near 128 CPUs. Beyond this point the curve is again linear, but with a slightly reduced slope. This slight
degradation is most probably attributable to the routing scheme used within the Altix nodes. The 512 CPU
nodes are built of four 128 CPU double cabinets, within any one of these, addresses are dereferenced using
the complete pointer. More distant addresses are dereferenced using “coarse mode” which drops the last
few bits of the address. On average, this translates into slightly slower communication when addressing less
local memory. Since only the OpenMP uses this global address space, the MPI results is not impacted by
this pointer swizzling.

The right axis of the speedup plot in Figure 20 is scaled in TFLOP/s for the baseline solution algorithm.
As with NSU3D, FLOP/s were counted by interrogating the Itanium2’s hardware counters using Intel’s
“pfmon” interface. Operations were counted for a single multigrid cycle and then divided by the time per
iteration on various numbers of processors to provide this scale. In establishing this scale, MADD operations
were counted as two operations. Substantial work on optimizing single CPU performance with this code has
resulted in somewhat better than 1.5 GFLOP/s on each CPU. When combined with linear parallel speedup,
this produces around 0.75 TFLOP/s for the code on 496 processors of a single Columbia node.

With single node performance solidly in the same range as that of NSU3D, our investigations now focus
on performance across multiple nodes of the Columbia system. These experiments were carried out on nodes
c17-c20, all of which are part of the Columbia’s “Vortex 3700” subsystem. They use the BX2 routers,

17 of 19

have double density processor bricks, and are connected using NUMAlink, InfiniBand, and 10Gig-E. Since
the system is not cache-coherent across all 4 of these nodes and the solver module does not have a hybrid
OpenMP+MPI build mode, performance was evaluated using MPI only.

0 512 1024 1536 2048
of CPUs

0

500

1000

1500

2000

Pa
ra

lle
l S

pe
ed

up

Ideal
4 Level Multigrid: c17, c18, c19, c20
Single Mesh: c17, c18, c19, c20

Cart3D, 25 M cell SSLV Launch Configuration
NUMAlink Interconnect

Figure 21. Comparison of parallel speedup of Cart3D
solver module using 1 and 4 levels of mesh in the multi-
grid hierarchy. NUMAlink interconnect.

Figure 21 examines parallel speedup for the sys-
tem comparing the baseline four level multigrid so-
lution algorithm with single grid. This experiment
was carried out exclusively using the the NUMA-
link interconnect, and spanned from 32-2016 CPUs.
As with the study in Figures 14 - 16 for NSU3D, re-
ducing the number of multigrid levels de-emphasizes
communication (relative to floating-point perfor-
mance) in the solution algorithm. Scalability for the
the single grid scheme is very nearly ideal, achiev-
ing parallel speedups of about 1900 on 2016 CPUs.
Its clear that even on the NUMAlink, communica-
tion is beginning to effect scalability of the multi-
grid. This is not surprising, with only 25M cells in
the fine mesh (12000 cells/partition on 2016 CPUs),
the coarsest mesh in the multigrid sequence has only
32000 cells giving only about 16 cells per partition
on 2016 CPUs. Roll-off in the multigrid results does
not become apparent until around 688 CPUSs, and
does really not start to degrade until above 1024
CPUs. Given this relatively modest decrease in performance it seems clear that the bandwidth demands of
the solver are not greatly in excess of that delivered by the NUMAlink. With 2016 CPUs and 4 levels of
multigrid the NUMAlink still posts parallel speedups of around 1585.

The work in Reference ? includes a study of delivered bandwidth and latency for both the NUMAlink
and InfiniBand for a variety of different communication patterns. To understand the implications of this for
Cart3D’s solver module the baseline four-level multigrid scheme was re-run using the InfiniBand interconnect
on the same nodes as the preceding experiment. Figure 22 displays these results plotted against those of the
NUMAlink interconnect.

0 500 1000 1500 2000
of CPUs

0

500

1000

1500

2000

Pa
ra

lle
l S

pe
ed

up

Ideal
NUMAlink interconnect
Infiniband interconnect

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TF
LO

P/
s

25 M cell, SSLV launch configuration
4 level multigrid, c17, c18, c19, c20

Cart3D

Figure 22. Comparison of parallel speedup of Cart3D
solver module with 4 levels of multigrid using the NU-
MAlink and InfiniBand interconnect.

As before, the identical problem was run on from
32 to 2016 CPUs using MPI. Note that results with
the InfiniBand, however, do not extend beyond 1524
CPUs due to the limitation expressed in equation
1. Tracing the results, from 32-496 CPUs the cases
were run on a single node and thus there is no dif-
ference between the two curves (no box-to-box com-
munication). Cases with 508-1000 CPUs were run
spanning two nodes of Columbia and some inter-
esting differences begin to appear. While the In-
finiBand consistently lags the NUMAlink, the most
striking example is the case at 508 CPUs which ac-
tually underperforms the single-box case with 496
CPUs. This is consistent with the observations in
reference ? which quantify the decrease in delivered
bandwidth for InfiniBand across two nodes. This
work also predicts an increasing penalty when span-
ning 4 nodes. As expected, cases with 1024-2016
CPUs (run on 4 nodes) show a further decrease with
respect to those posted by the NUMAlink. These results are also consistent with the investigations performed
with NSU3D, however, the smaller problem size used here emphasizes the communication even more heavily.
Performance of the NUMAlink case with 2016 CPUs is slightly over 2.4 TFLOP/s.

18 of 19

VIII. Conclusions and Future Work

This paper examined the parallel performance of two widely used high-performance aerodynamic sim-
ulation packages on the newly installed NASA Columbia supercomputer. These packages include both a
high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver (NSU3D), and a fully-automated invis-
cid flow package for cut-cell Cartesian grids (Cart3D). The combination of these two simulation codes enables
high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope. They
permit both extensive parametric analysis as well as detailed simulation of critical cases. Both packages are
industrial-level codes designed for complex geometry and incorporate customized multigrid solution algo-
rithms. Numerical performance on Columbia was examined using MPI, OpenMP and hybrid (OpenMP &
MPI) communication architectures. Experiments focused on scalability to large numbers of CPUs on the
Columbia system. In particular, they contrasted the performance of the NUMAlink and InfiniBand intercon-
nect fabrics, and examined the incremental performance degradation incurred by additional communication
when including very coarse grids in the multigrid scheme. Numerical results demonstrate good scalability
on up to 2016 cpus using the NUMAlink4 interconnect. These examples showed linear parallel speedups
and posted measured computational rates in the vicinity of 3 TFLOP/s. Both codes showed modest per-
formance degradation at large CPU counts on the InfiniBand interconnect particularly as ever coarser grids
were included in the multigrid hierarchy. These results are important since the NUMAlink spans at most four
Columbia nodes and runs using more than 2048 CPUs must rely on the InfiniBand for at least a fraction of
their communication. The numerical results in this study are encouraging enough to indicate that larger test
cases using combined MPI/OpenMP communication should continue to get good performance improvements
well beyond the four Columbia nodes used in this study.

References

1“Second AIAA Drag Prediction Workshop,” see: http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/.
2Murman, S. M., Aftosmis, M. J., and Nemec, M., “Automated parameter studies using a Cartesian method,” AIAA-Paper

2004-5076.
3Salas, M. D., “Digital Flight: The Last CFD Aeronautical Grand Challenge,” Proc. of the Int. Conf. on the Research

Trend of PDE Modeling and Computation. To appear: J.of Scientific Computing.
4Biswas, R., Djomehri, M. J., Hood, R., Jin, H., Kiris, C., and Saini, S., “An Application-Based Performance Characteri-

zation of the Columbia Supercluster,” Paper to be presented at the 2005 Supercomputing Conference, Seattle, WA.
5Mavriplis, D. J. and Venkatakrishnan, V., “A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes

equations on unstructured meshes,” International Journal for Numerical Methods in Fluids, Vol. 23, No. 6, 1996, pp. 527–544.
6Mavriplis, D. J. and Venkatakrishnan, V., “A Unified Multigrid Solver for the Navier-Stokes Equations on Mixed Element

Meshes,” International Journal for Computational Fluid Dynamics, Vol. 8, 1997, pp. 247–263.
7Mavriplis, D. J. and Pirzadeh, S., “Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis,”

AIAA Journal of Aircraft , Vol. 36, No. 6, Dec. 1999, pp. 987–998.
8Spalart, P. R. and Allmaras, S. R., “A One-equation Turbulence Model for Aerodynamic Flows,” La Recherche

Aérospatiale, Vol. 1, 1994, pp. 5–21.
9Mavriplis, D. J., “Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes,” Journal of Com-

putational Physics, Vol. 145, No. 1, Sept. 1998, pp. 141–165.
10Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” Tech. Rep.

95-035, University of Minnesota, 1995, A short version appears in Intl. Conf. on Parallel Processing 1995.
11Gropp, W., Lusk, E., and Skjellum, A., Using MPI: Portable Parallel Programming with the Message Passing Interface,

MIT Press, Cambridge, MA, 1994.
12Mavriplis, D. J., “Parallel Performance Investigations of an Unstructured Mesh Navier-Stokes Solver,” ICASE Report

No. 2000-13, NASA CR 2000-210088.
13Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and efficient Cartesian mesh generation on component based

geometry,” AIAA Journal , Vol. 36, No. 6, June 1998, pp. 952–960.
14Aftosmis, M. J., Berger, M. J., and Adomavicius, G. D., “A parallel multilevel method for adaptively refined Cartesian

grids with embedded boundaries,” AIAA-Paper 2000-0808.
15Murman, S. M., Chan, W. M., Aftosmis, M. J., and Meakin, R. L., “An interface for specifying rigid-body motion for

CFD applications,” AIAA-Paper 2003-1237.
16Haimes, R. and Aftosmis, M., “On generating high-quality water-tight triangulations directly from CAD,” Proc. of the

Internat. Soc. for Grid Generation (ISGG) 2002, Honolulu, HI.
17Nemec, M., Aftosmis, M. J., and Pulliam, T., “CAD-based aerodynamic desisgn of complex configurations using a

Cartesian method,” AIAA-Paper 2004-0113.
18Aftosmis, M., Berger, M. J., and Murman, S. M., “Applications of Space-Filling-Curves to Cartesian methods in CFD,”

AIAA-Paper 2004-1232.
19Berger, M. J., Aftosmis, M. J., Marshall, D. D., and Murman, S. M., “Performance of a new CFD flow solver using a

hybrid programming paradigm,” J. Parallel Distrib. Comput., Vol. 65, 2005, pp. 414–423.

19 of 19

20Lee-Rausch, E. M., Buning, P. G., Morrison, J. H., Park, M. A., Rivers, S. M., Rumsey, C. L., and Mavriplis, D. J.,
“CFD Sensitivity Analysis of a Drag Prediction Workshop Wing/Body Transport Configuration,” AIAA Paper 2003-3400.

21Lee-Rausch, E. M., Frink, N. T., Mavriplis, D. J., Rausch, R. D., and Milholen, W. E., “Transonic Drag Prediction on a
DLR-F6 Transport Configuration using Unstructured Grid Solvers,” AIAA Paper 2004-0554.

22Mavriplis, D. J., “Grid Resolution Study of a Drag Prediction Workshop Configuration using the NSU3D Unstructured
Mesh Solver,” AIAA-Paper 2005-4729, presented at the 23rd AIAA Applied Aerodynamic Conference, Toronto, Canada.

23Jameson, A., “Aerodynamic Shape Optimization using the Adjoint Method,” VKI Lecture Series on Aerodynamic Drag
Prediction and Reduction, von Karman Institute of Fluid Dynamics, Rhode St Genese, Belgium.

24Nielsen, E. J., Lu, J., Park, M. A., and Darmofal, D. L., “An Exact Dual Adjoint Solution Method for Turbulent Flows
on Unstructured Grids,” AIAA Paper 2003-0272.

25Mavriplis, D. J., “Formulation and Multigrid Solution of the Discrete Adjoint for Optimization Problems on Unstructured
Meshes,” AIAA-Paper 2005-0319, accepted for publication in AIAA Journal.

20 of 19

